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Progress in the field of thermoelectrics relies heavily on new
materials and exploratory synthesis.1 Low-dimensional structures
are particularly attractive.2 Once favorable new phases are discov-
ered they become “platforms” for optimization through studies of
solid solutions, nonstoichiometric compositions, and doping. In our
laboratory the search for new thermoelectric materials is focused
on ternary and quaternary bismuth chalcogenides. By virtue of their
often complex anisotropic crystal and electronic structures, these
materials can exhibit many essential features required for high figure
of merit.3-11 A promising new phase that emerged is CsBi4Te6,
which successfully reached a ZT of 0.8 at 225 K.12 In an effort to
produce new materials that resemble CsBi4Te6, we introduced Pb
metal into its layered framework and searched for corresponding
quaternary phases. This resulted in CsPbBi3Te6 (1) and CsPb2Bi3-
Te7 (2), which were discovered through reactions of CsBi4Te6 with
PbTe.13,14 Correspondingly the isostructural CsSnBi3Te6 (3) and
CsSn2Bi3Te7 (4) were obtained by reacting CsBi4Te6 with SnTe.15,16

The four compounds can also be prepared from stoichiometric
mixtures of Cs2Te, Pb (Sn), Bi, and Te. These phases adopt novel
two-dimensional structures, reminiscent of but not the same as
CsBi4Te6, built up of multilayered slabs. This family offers a brand-
new quaternary system, Cs-M-Bi-Te (M ) Pb and Sn), available
for thermoelectric investigations, including fine-tuning of composi-
tions and doping.

The layered structure of compound1 consists of infinite anionic
[PbBi3Te6]- slabs separated with Cs+ cations, Figure 1a. Each
[PbBi3Te6]- slab consists of two crystallographically distinct metal
sites, M(1) and M(2), both of which are octahedrally coordinated
with Te atoms. Atoms Te(1), Te(2), and Te(3), are respectively 2-,
4-, and 6-coordinated with the metal atoms. The M-Te bond
distances range between 2.964(2)-3.399(1) Å for M(1)Te6 and
3.093(1)-3.231(1) Å for M(2)Te6. The average M-Te distance is
3.173(1) Å, which is very similar to the average Bi-Te distance
of 3.18 Å in CsBi4Te6. However, both MTe6 octahedra in1 have
two short, two medium, and two long M-Te bonds. This behavior
may be caused from the mixed Pb2+ and Bi3+ ion occupation of
these M sites.17 As depicted in Figure 2, the [PbBi3Te6]- slab can
be viewed as a fragment excised from PbTe-type structure along
the [011] direction with a thickness of four{PbTe} monolayers.

The structure of CsPb2Bi3Te7 (2) has thicker [Pb2Bi3Te7]-

slabs, Figure 1b. Interestingly, these slabs are also excised fragments
from the PbTe structure with five{PbTe} monolayers, i.e., one
monolayer thicker than the slab in1. As a result, theb axis,
perpendicular to the layers, is correspondingly increased. There are
some significant differences in the stacking and structural details
of the slabs in the two compounds. First, as the slabs stack along

the b-axis the rows ofµ2-Te(1) atoms found on their surfaces are
arranged in staggered fashion in1, but they are eclipsed in2.
Second, theµ2-Te(1) atom shifts away from itsm2m site in1 to a
msite in2 causing the repeating unit along thec axis in2 to double.

Since CsPbBi3Te6 and CsBi4Te6 possess a “M4Te6” type of
framework, it is interesting to compare and contrast these two
structures. CsBi4Te6 containing formally Bi2+ ions features distinct
infinite [Bi4Te6]- rods arranged side-by-side and linked with Bi-
Bi bonds to make slabs.12 As the Bi2+ ions are replaced by Pb2+

ions to give CsPbBi3Te6, Bi-Bi bonding is no longer possible, nor
necessary. The [Bi4Te6]- slabs (now [PbBi3Te6]-) evolve, through
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Figure 1. The structures of (a) CsPbBi3Te6 (1) and (b) CsPb2Bi3Te7 (2) in
projection. The large shaded circles are Cs atoms, small shaded circles are
Pb/Bi atoms, and open circles are Te atoms. M(1), M(2), M(3), and M(4)
are sites of mixed Pb/Bi occupation.

Figure 2. A perspective view of the PbTe structure along the [011]
direction. The polyhedra represent the PbTe6 octahedra. (a) The [PbBi3-
Te6] slab in1 as a fragment excised from this lattice (four monolayers thick
counting from 2-5). (b) The [Pb2Bi3Te7] slab in 2 as a fragment that is
seven monolayers thick (five monolayers thick counting from 2-6).
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cleavage of Bi-Bi bonds and formation of new Bi(Pb)-Te bonds,
into the infinite slabs shown in Figure 1a.

In both structures, the Cs cations are surrounded by nine Te atoms
with Cs-Te distances between 3.433(3) and 4.243(6) Å. The
resulting tricapped trigonal prismatic environment is similar to that
found in CsBi4Te6. Occupancy refinement of the Cs(1) sites showed
85% for1 and 91% for2. Therefore, to maintain electroneutrality
the final formulas were adjusted to be Bi-rich compositions;
Cs1-xPb1-xBi3+xTe6 (x ) 0.15) of1 and Cs1-xPb2-xBi3+xTe7 (x )
0.09) of 2. The isostructural Sn analogues gave similarly Cs-
deficient stoichiometries.15,16

Charge transport measurements on polycrystalline ingots of1
and2 show high electrical conductivity at room temperature, which
increases as the temperature drops.

The conductivities decrease from 1010 S/cm at 80 K to 800 S/cm
at 350 K for1 and from 970 S/cm at 80 K to 570 S/cm at 350 K
for 2, Figure 3. The thermopower of1 and2 is -50 and-57µV/K
at 350 K, respectively, rising to higher values with rising temper-
ature. These conductivities are affected by the morphological defects
(crack, grain boundaries, etc) of the ingots used. The intrinsic
conductivities are probably much higher. The relatively low
thermopower and metallic-like temperature dependence of conduc-
tivity of 1 and2 indicate that both materials are heavily doped and
are reminiscent of those of CsBi4Te6 before being optimized through
doping. The negative sign of thermopower indicates n-type charge
transport in these compounds. This is consistent with their Bi-rich
nonstoichiometric nature suggested by the elemental analysis and
crystallographic refinement. A Bi-rich/Pb-deficient stoichiometry
will result in electron carrier excess in these materials giving rise
to negative thermopower, as Bi possesses an extra electron
compared to Pb. Presumably, a Pb-rich/Bi-deficient stoichiometry
would lead to p-type behavior. The thermal conductivities at room
temperature are very low at 1.8 W/(m‚K) for 1 and 1.6 W/(m‚K)
for 2, comparable to those of Bi2Te3 and CsBi4Te6.12

The new structure types reported here are able to form a number
of other isostructural members (in addition to3 and 4) such as
rubidium analogues and antimony CsPbSb3Te6 and CsPb2Sb3Te7.

Consequently, the novel two-dimensional structures in these systems
define two potentially promising adaptable platforms for thermo-
electric investigations.
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Figure 3. Variable-temperature electrical conductivity and thermopower
data for oriented polycrystalline ingot samples of (a) CsPbBi3Te6 (1) and
(b) CsPb2Bi3Te7 (2). The crosses are thermopower.
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